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“A woman with an oval face, 
dark brown skin, and black 
hair in a high bun wears a 
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Figure 1. We propose TeRA , the first latent diffusion model specifically designed for text-guided 3D avatar generation. Leveraging a
carefully curated dataset and designed network architecture, TeRA achieves superior inference speed, text-to-3D alignment, and visual
quality. Our method naturally supports direct animation and enables customizable editing via a structure-aware editing technique.

Abstract

Efficient 3D avatar creation is a significant demand in the
metaverse, film/game, AR/VR, etc. In this paper, we re-
think text-to-avatar generative models by proposing TeRA
, a more efficient and effective framework than the previous
SDS-based models and general large 3D generative mod-
els. Our approach employs a two-stage training strategy
for learning a native 3D avatar generative model. Initially,
we distill a deencoder to derive a structured latent space
from a large human reconstruction model. Subsequently, a
text-controlled latent diffusion model is trained to generate
photorealistic 3D human avatars within this latent space.
TeRA enhances the model performance by eliminating slow
iterative optimization and enables text-based partial cus-
tomization through a structured 3D human representation.
Experiments have proven our approach’s superiority over
previous text-to-avatar generative models in subjective and
objective evaluation. The code and data will be publicly
released upon publication.

1. Introduction

With the explosive growth of the metaverse, film/game pro-
duction, and the AR/VR industry in recent years, the cre-
ation of rapid, convenient, and efficient 3D human avatars
has emerged as a critical bottleneck. Conventional ap-
proaches to 3D human avatar reconstruction often involve
intricate and time-consuming modeling techniques using a
single camera [64, 77, 92, 93], camera arrays [3, 19, 23], or
range sensors [80, 81]. On another line of research, large 3D
generative models [75, 76, 86] have recently emerged as an
efficient method for producing 3D models from image or
text descriptions. Nevertheless, experimental results indi-
cate that all existing 3D generative large models fail to pro-
duce plausible results for photorealistic 3D human avatars.
Such defect is attributed to a profound style bias in the train-
ing samples, where there is an overabundance of designed
cartoon-like character models and a dearth of high-precision
realistic human models.

For the creation of photorealistic 3D human avatars,
the state-of-the-art approach leverages the score distillation
sampling (SDS) strategy [57]. The core idea of SDS lies
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in its utilization of pre-trained 2D diffusion models to steer
the optimization process for generating 3D models, with-
out the necessity for any 3D data for training. The 3D
priors employed in SDS-based methods are derived from
pre-trained 2D vision-language large models [57], rich in
photorealistic human features. Nevertheless, the inherent
absence of explicit 3D structures in 2D diffusion models
poses a challenge in ensuring multi-view consistency. This
leads to the suboptimal quality of 3D human avatars gener-
ated within the SDS framework. Furthermore, the iterative
distillation procedure inherent in SDS methods often neces-
sitates a substantial amount of time to complete the opti-
mization process. The inherent limitations of the SDS route
prevent it from achieving efficient and robust 3D avatar gen-
eration.

In this paper, we introduce TeRA , a feedforward text-to-
avatar generative model tailored for the efficient, realistic,
and editable creation of 3D humans driven by text. To tackle
the challenge of insufficient 3D human data, we leverage a
collaborative approach that integrates large vision-language
and language models, providing highly accurate and de-
tailed appearance descriptions for HuGe100K [97], an ex-
tensive 3D human dataset. Regarding network architecture
and training, we utilize a two-stage feedforward prediction
model. The first stage employs an autoencoder to extract a
structured and readily generable latent space from a com-
prehensive human reconstruction model. Subsequently, the
second stage trains a text-controlled latent diffusion model
within this latent space, generating diverse and lifelike 3D
human models. We noticed that directly connecting the
diffusion model to the encoder results in significantly di-
minished performance, primarily due to posterior collapse.
To address this issue, we propose a distillation module that
improves the generated quality and reduces the training re-
sources. Furthermore, by incorporating a structured human
representation, we have enabled fine-grained editing of a
partially customizable 3D avatar through text descriptions.

Our framework markedly improves the performance of
the text-to-avatar model. Firstly, by embracing a single-
pass prediction framework, TeRA obviates the necessity for
the slow and cumbersome iterative optimization processes
characteristic of SDS-based methods. Secondly, incorpo-
rating a structured 3D human representation enables text-
based partial customization, significantly enhancing usabil-
ity. Lastly, our model exhibits exceptional generation qual-
ity and text-model alignment, outperforming SDS-based
approaches and general 3D generative large models. Com-
prehensive user studies and qualitative/quantitative exper-
imental results substantiate our TeRA ’s superior perfor-
mance.

The contributions of this paper can be summarized as:

• We propose the pioneering text-to-3D avatar generative
model built upon the latent diffusion model framework.

In terms of speed, text-model alignment, and rendering
quality, it surpasses previous state-of-the-art models that
leverage scored distillation sampling.

• A distillation module that links the diffusion model to the
VAE encoder has been introduced, serving as an essential
component for generating high-quality avatar models.

• By introducing a structured 3D human representation,
structure-aware editing is achieved for a partially cus-
tomizable 3D avatar.

2. Related Work

2.1. 2D Diffusion-based Generative Model
Recent years have witnessed remarkable progress in vision-
language technologies, driven by breakthroughs in cross-
modal representation learning [58] and generative mod-
els [29, 45, 60, 62, 88]. These approaches, trained on
massive-scale text-image datasets, demonstrate unprece-
dented capability in understanding and synthesizing visual
content. Such advancements have propelled significant
improvements in text-to-image generation systems [9, 59,
61, 63] and laid the foundation for text-to-video synthe-
sis [11, 24, 48, 51]. With the large-scale data containing
bilions of image-text pairs and video-text pairs, the diffu-
sion model shows great understanding of general objects
and enabling the synthesis of high-quality and diverse ob-
jects. Furthermore, many works have exploring the contro-
lable generalization with addition condition, including cam-
era motion [18, 25, 32, 38, 91] or others [6, 10, 85, 90].

2.2. Text-to-3D Generation
Recent text-to-3D generation methods can be broadly cate-
gorized into two main approaches: feedforward generation
and optimization-based generation. Feedforward genera-
tion methods employ a variety of 3D representations, in-
cluding point clouds [2, 65], voxel grids [74], meshes [17],
implicit radiance fields [5, 13, 26, 95], and 3D Gaussian
Splatting (3DGS)[39, 40, 96]. GAN-based approaches
leverage conditional GANs[14, 49, 67, 73] to generate 3D
assets, but they often struggle with limited diversity and
suboptimal quality. Recently, diffusion-based methods for
native 3D generation [68, 75, 76, 86] have shown promise
by directly generating 3D shapes and textures from text
prompts. However, these methods require high-quality,
large-scale 3D asset datasets to achieve satisfactory re-
sults. Optimization-based generation methods adopt a
per-prompt generation strategy by distilling 3D knowledge
from rich priors learned in the 2D domain. For example,
early approaches utilized CLIP guidance [58] to generate
the multi-view information [36, 54, 55, 69]. More recent
methods employ score distillation sampling (SDS) [57] to
transfer the high-quality rendering capabilities of state-of-
the-art text-to-image models [15, 16, 53, 57, 66, 70, 72, 79].
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Despite their advancements, these methods are hindered by
prolonged per-scene optimization times and often produce
cartoonish or multi-face 3D outputs.

2.3. Text-to-3D Avatar Generation
By incorporating human prior such as SMPL [50] and
SMPL-X [56], the 3D human generation literature has
emerged as a distinct subfield within text-to-3D re-
search [12, 20, 30, 37, 46, 71, 82, 84, 89, 94]. Avatar-
CLIP [31] combines CLIP guidance with SMPL tem-
plates to generate 3D avatars. DreamWaltz [35] intro-
duces 3D-aware skeleton conditioning and occlusion-aware
SDS to mitigate the Janus (multi-face) problem. DreamHu-
man [41] utilizes imGHUM [4] to encode pose- and shape-
conditioned signed distance fields, enhancing neutral hu-
man reconstruction. HumanNorm [34] enhances geomet-
ric details by fine-tuning a text-to-depth/normal diffusion
models to provide explicit structural constraints. Avatar-
Verse [83] fine-tunes the ControlNet [85] branch with
DensePose [22] as an SDS source for multi-view genera-
tion. HumanGaussian [47] integrates skeleton and depth
maps to regulate the 3DGS embedded on the SMPL-X
template, enabling efficient rendering. TADA [44] applies
displacement maps to the SMPL-X shape and texture UV
map to represent 3D avatars, optimizing them through a hi-
erarchical rendering approach with SDS. However, these
optimization-based methods often suffer from significant
drawbacks, including long optimization times—sometimes
requiring several hours per scene—and the generation of
unrealistic results, such as cartoon-like appearances and
oversaturation. Building on the insights from native 3D
generation models, we propose a feedforward generation
pipeline for 3D human avatars. This approach significantly
improves both the generated results’ efficiency and realism.

3. Method
This section introduces TeRA, an efficient, realistic, and ed-
itable text-guided 3D human generation model. The text-to-
avatar data creation is outlined in Sec. 3.1, followed by 3D
avatar representation in Sec.3.2. Subsequently, we elabo-
rate on the network architecture and training strategy, en-
compassing a two-stage latent compression approach de-
tailed in Sec. 3.3, and a structured latent diffusion model
presented in Sec. 3.4. Lastly, Sec. 3.5 discusses structured-
aware editing, which allows for fine-grained customization
of a generated 3D human avatar.

3.1. Text-to-Avatar Dataset
To train a 3D Avatar generation model, the primary chal-
lenge lies in establishing a large-scale and diverse text-
to-avatar dataset. The HuGe100K [97] dataset, compris-
ing 100k photorealistic multi-view 3D human models, ef-
fectively fulfills the requirements for extensive and varied

data. However, it suffers from a lack of text annotations.
To address this, we enhance the HuGe100K dataset by in-
corporating semantic annotations, creating a comprehensive
large-scale text-to-avatar dataset.

Early annotation of 3D objects often relies on vision-
language models such as BLIP [43] or CLIP [58]. How-
ever, these models struggle to generate detailed and accu-
rately aligned descriptions, which limits the diversity and
precision of text-to-3D generative models. Recently, large
vision-language models(VL model)[1, 8, 78] have demon-
strated excellent performance in image understanding tasks.
Therefore, following [21], we adopt a collaborative an-
notation approach using a large vision-language model
Qwen2.5-VL[8] and a large language model Qwen2.5[78]
to annotate multi-viewpoint human image data.

As illustrated in Fig. 2 (a), we first input
front/back/right/left views of a human into the Qwen2.5-
VL, obtaining comprehensive raw descriptions of various
body parts through carefully designed prompts, including
facial features, upper and lower clothing, shoes, and more.
Subsequently, these raw descriptions are processed by
the Qwen2.5 to extract essential information, producing
a concise and precise description of approximately 60
words. Finally, Qwen2.5 further refines and condenses the
content into a succinct phrase-based description of about
20 words. Our trained text-guided 3D human generation
model demonstrates high textual consistency thanks to
the meticulous and accurate text annotations. Additional
details regarding the data annotation process can be found
in the supplementary material.

3.2. 3D Human Representation
After creating the dataset, our next step is establishing text-
to-avatar generative models. The first issue is deciding how
to represent 3D human avatars. In this paper, we follow
prior works [87, 97] to represent 3D human avatars with
UV-structured 3D Gaussians. We will begin by providing
preliminary knowledge about SMPL-X [56] and 3D Gaus-
sian Splatting (3DGS) [39], followed by an introduction to
the concrete representation settings we employ.
SMPL-X. is a deformable 3D parametric human model
with excellent driving performance and decoupled shape
and pose control, currently widely applied in human-driven
reconstruction and generation tasks. SMPL-X generates a
3D human mesh using shape parameter β, pose parameter
θ, and expression parameter ψ. The generated mesh con-
sists of 10,475 vertices and 54 joints. The deformed human
meshM(β, θ, ψ) is derived from the mesh T (β, θ, ψ) in the
canonical space through linear blend skinning (LBS). The
process is formulated as:

M(β, θ, ψ) = LBS(T (β, θ, ψ), J(β), θ, ψ,W ) (1)
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Figure 2. Overall method. (a) Given the annotated multi-view human dataset, we train a text conditioned 3D avatar generative model.
(b) The model is established upon a structured 3D human representation. The model training includes two stages: (c) firstly, a decoder is
required by distilling a pretrained 3D human reconstruction model; (d) secondly, a structured latent diffusion model (LDM) is trained to
generate structured latent maps from noises.

where J(β) represents the positions of the key joints, and
W denotes the skinning weights. The canonical mesh
T (β, θ, ψ) is obtained using the following formula:

T (β, θ, ψ) = Tc +Bs(β) +Be(ψ) +Bp(θ) (2)

where Tc is the template human mesh, and Bs(β), Be(ψ),
Bp(θ) represent shape-dependent, expression-independent,
and pose-dependent deformations, respectively.
3D Gaussian Splatting. 3D Gaussian is an explicit repre-
sentation for 3D scenes, composed of a set of 3D Gaussian
primitives that can be real-time rendered via differentiable
rendering. Each primitive consists of the following four
properties: position µ, opacity α, color c, and covariance
matrix Σ. In practice, the covariance matrix is typically as-
sumed to be Σ = RSSTRT , where S represents the size of
the Gaussian ellipsoid, and R is its rotation matrix.

By applying a view transformation, the 3D Gaussian
primitives are projected onto the imaging plane, resulting
in a set of 2D Gaussian ellipses. The final imaging process
is as follows:

c(p) =
∏
i∈N

(
ciσi

i−1∏
j=1

(1− σj)

)
, σi = αiG(p, µi, si, ri),

(3)
where p is the query point position, and µi, si, ri, ci, and
αi represent the position, scale, rotation, color, and opacity
of the i-th Gaussian, respectively. G(p, µi, si, ri) represents
the value of the i-th Gaussian at the point p.
Structured Gaussians for 3D Human. We represent the
3D human body using a structured Gaussian attribute map,
where each Gaussian’s attributes are stored in a UV space

aligned with the SMPL-X mesh. Initially, the position of
each 3D Gaussian µ̂k is set to the densified SMPL-X mesh
vertices. The scale ŝk is defined by the relative distance to
neighboring Gaussians, and the rotation r̂k is aligned with
the local tangent frame of the 3D surface. A neural network
then predicts offset values {δµk

, δrk , δsk} for position, ro-
tation, and scale, as well as the color ck and opacity αk

of each Gaussian. The final attributes of the Gaussians are
computed as:

µk = µ̂k + δµk (4)
rk = r̂k · δrk (5)
sk = ŝk · δsk (6)

The complete set of attributes, including µk, rk, sk, ck,
and αk, are stored in a multi-channel attribute map within
the UV space of the SMPL-X mesh. As shown in Fig. 2
(b), this attribute map is transformed into 3D Gaussian Hu-
man through UV sampling and then rendered into images.
In our approach, the attribute map serves as the output of
the generative network, enabling flexible editing and direct
animation of 3D avatars.

3.3. Distillation-based Latent Coding
Our text-to-avatar generative model is based on the La-
tent Diffusion Model (LDM) framework [60]. LDM gen-
erates images by reversing a noising process iteratively
in a distilled latent space, reducing computational com-
plexity while preserving semantic information. Recent
works [33, 42, 75, 76] have validated its effectiveness on 3D
generative tasks. In this paper, we pioneer the integration of
UV-structured priors into text-to-avatar generation, thereby
establishing the first LDM for text-to-3D avatar generation.
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The typical training process of a text-conditioned LDM
comprises two stages. A Variational Autoencoder (VAE)
is trained in the first stage to establish a latent space. In the
second stage, a text-conditioned diffusion model is trained
to generate latent maps within this space, which are sub-
sequently decoded by the trained decoder to produce the
final results. Through experimental observations, we found
that directly training a VAE for complex 3D human mod-
els is prone to instability and demands substantial computa-
tional resources. Therefore, we propose a distillation-based
decoding method that constructs the latent space based on
a pre-trained, large-scale reconstruction model. This ap-
proach is not only robust but also requires significantly less
computational resources.

Concretely, we leverage IDOL [97], a large reconstruc-
tion model with an encoder-decoder architecture, to encode
the latent space. IDOL directly reconstructs a 3D human
model from a single input image and naturally constructs a
generalizable and uniform feature space that maps the in-
put image to the 3D human representation. Its model con-
sists of three main components: 1) The first part is a pre-
trained high-resolution human foundation model, primarily
responsible for capturing human poses and fine-grained ap-
pearance details from high-resolution human images. The
output feature has a spatial resolution of 64×64 with 1536
channels. This feature space is aligned with the human im-
age space and represents shallow features of the network,
which are insufficient to capture 3D human structural infor-
mation. 2) The second part is a UV-align transform, which
aligns the previously obtained human image features into
the UV feature space. The output consists of 9216 tokens,
with a dimension of 1536. While this feature space con-
tains rich 3D human structural and appearance information,
its high dimensionality makes fitting its distribution using
generative models challenging. 3) The third part is the UV
Decoder, which converts the UV tokens from the previous
part into a UV feature of size 1536×1536 with 32 chan-
nels. This UV feature is further decoded into 3D human
Gaussians and rendered as an RGB image. Upon observa-
tion, this feature space exhibits good structural properties
and relatively shallow feature representation close to final
output, making it easier for the LDM to learn.

However, this UV feature cannot be directly utilized to
train LDM due to its high resolution. Therefore, we propose
a distillation phase to construct a more compact representa-
tion from the original UV feature space. Specifically, the uv
feature maps from IDOL are down-sampled to a resolution
of 256×256. A streamlined convolutional distillation net-
work, consisting of upsampling and convolution operations,
is then trained to restore these features to a 1024×1024 res-
olution. Subsequently, two separate convolutional networks
decode the geometry-related and color-related attributes of
the 3D Gaussians into UV maps. Finally, the Gaussian at-

tributes are obtained through UV sampling. The detailed
network architecture is provided in the supplementary ma-
terial.

These two networks form the distilled decoder, which re-
constructs the 3D Gaussian human representation from the
low-resolution latent feature. We randomly select four or-
thogonal views per avatar during training from the dataset
as ground truth. Specifically, we input the front-view im-
age into the IDOL encoder to obtain the corresponding UV
features, which are then decoded by the distilled decoder
into a 3D human. This 3D representation is rendered from
the selected views, and the rendered results Ipred are super-
vised by the corresponding ground truth images Igt. The
total training loss Ldist consists of two components: the im-
age loss (L2 loss and a VGG loss) and the L2 regularization
term for the Gaussian offsets:

Ldist =

N∑
i=1

(
∥Ipred − Igt∥2 + λvggLvgg(Ipred − Igt)

)
+λoffset∥Goffset∥2 (7)

where λL2 = 20, λvgg = 20 and λoffset = 1

3.4. Structured Latent Diffusion Model
We use Latent Diffusion to fit the structured UV latent dis-
tribution. To introduce text control, we employ CLIP as the
text encoder and train the diffusion model using Classifier-
Free Guidance. This enables the model to generate text-
aligned structured UV features from noise.
Text Conditioning. For the text annotations in the dataset,
we follow Stable Diffusion and use CLIP[58] as the text
encoder. After encoding the text with CLIP, we obtain 77
tokens of 768 channels, which are then mapped through a
small linear layer and injected into the cross attention block
of the diffusion model as the text condition.
Classifier-free Guidance. We employ classifier-free guid-
ance for text control. Expressly, during the training of the
Diffusion model, we randomly set the text annotations to
null for 20% of the data, enabling joint training of both con-
ditioned and unconditioned generation. During inference,
the network outputs for the conditioned and unconditioned
cases are linearly combined with a weight w to produce the
final output [28].
Diffusion Model. Diffusion is a probabilistic model that fits
the dataset distribution by progressively denoising Gaussian
noise. The denoising process is an inverse discrete-time
Markov chain of length t. In the forward noising process,
Gaussian noise e ∼ N (0, I) is gradually added to the sam-
ples from the dataset at each time step t. At the t-th step,
the noisy sample xt is given by

xt := α(t)x+ σ(t)e (8)
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where both α and σ are part of the noise scheduling. Af-
ter T steps of noising, the sample is fully transformed into
Gaussian noise. In the reverse denoising process, the Dif-
fusion model starts with Gaussian noise at step T and pro-
gressively denoises until it recovers the clean sample z0 at
step 0.

We adopt an x0-prediction approach when training our
Structured Latent Diffusion model. First, a feature f0 is
extracted from the structured latent feature as a sample. A
time step t is randomly chosen from the range 1 to T , and
the corresponding αt and σt are generated using a noise
scheduler. The feature ft is then obtained using the equation
for xt. The network is then tasked with predicting the clean
feature f̂0 corresponding to ft, and is supervised using the
mean squared error (MSE) loss:

Ldiff = ∥f̂0 − f0∥22 (9)

3.5. Structure-Aware Editing
Recently, SMPL-X-aligned approaches (e.g., IDOL [97])
have facilitated texture editing of avatars by modifying the
SMPL-X UV texture maps and controlling their shape via
SMPL-X coefficients. However, due to the increased com-
plexity of clothing geometry and texture, these methods
generally struggle with tasks such as clothing replacement.

Benefiting from our effective distillation of IDOL, the la-
tent space we obtain is exceptionally well-structured. Con-
sequently, editing the generated 3D avatars by manipulating
the structured latent representation is straightforward. Nev-
ertheless, because an avatar’s clothing is often strongly cor-
related with its identity, directly swapping the correspond-
ing regions of the structured latent between two avatars can
result in severe artifacts, such as unnatural edge transitions.
Therefore, we choose to leverage the powerful inpainting
capability of diffusion models to complete the regions of
the structured latent corresponding to the clothing to be re-
placed, thereby producing a natural and plausible clothing
swap effect.

Specifically, since we use latent diffusion to generate
3D digital humans and our latent space is well-structured,
it is natural that we can perform virtual try-on by editing
the structured latent through diffusion inpainting. Follow-
ing Avrahami et al.’s work [7], we denote the latent corre-
sponding to the 3D digital human as the background part
Lbg , which needs to be preserved, and execute a specific
denoising process to generate the modified foreground Lfg

as follows. First, we randomly sample the Gaussian noise
to obtain the noise LT

fg . At each denoising step t, we predict
the noisy latent Lt−1

fg for the previous step under the control
of the target text, then add noise to the clean background la-
tentLbg via the noise scheduler to getLt−1

bg for step t−1. By
using a preprocessed foreground mask maskfg , we com-
bine Lt−1

bg and Lt−1
fg to obtain Lt−1. Lt−1 is then used as

input for the network in the next denoising step to predict
Lt−2
fg . This process is repeated until t = 0, at which point

the latent after the clothing change is obtained. The result-
ing latent is then passed into the decoder to generate the 3D
human with the new clothing.

4. Experiments

4.1. Implementation Details
Our training set comprises 70,000 pairs of multi-view im-
ages, each annotated with SMPL-X parameters and accom-
panying text descriptions, as detailed in Sec. 3.1. For each
individual, we utilize 24 views at a resolution of 896× 640
for training, with accompanying text descriptions ranging
from 12 to 40 words.

The distillation-based latent decoder is trained on 4
NVIDIA RTX A6000 GPU with a batch size of 2. For
each person, four orthogonal views are randomly selected
for both rendering and supervisory signals. The structured
latent diffusion model is trained on 4 NVIDIA RTX 3090
GPU with a batch size of 8, utilizing the DDPM noise
scheduler with 1000 steps. The entire training process takes
approximately 90 hours to complete. In the inference phase,
we apply the DDPM sampling method with 100 denoising
steps to refine latent noise into a 3D representation. The
output is then decoded by the Auto Decoder, completing
the process in 12 seconds on an NVIDIA RTX 3090 GPU.

4.2. Text-Guided 3D Human Generation
Baselines. We compare our proposed method with exist-
ing state-of-the-art text-to-3D human generation methods,
including TADA [44], X-oscar [52], HumanGaussian [47],
and HumanNorm [34]. All these baseline methods are SDS-
based 3D avatar generative models.
Qualitative comparison. The rendered results of all meth-
ods are shown in Fig. 3. Under prompts with everyday
clothing, SDS-based methods generally fail to generate re-
alistic avatars. Specifically, HumanGaussian, TADA, and
X-OSCAR, which directly distill Stable Diffusion using
SDS Loss, exhibit overly saturated and unrealistic colors.
Furthermore, due to the lack of real human geometric su-
pervision, TADA and X-OSCAR produce avatars with dis-
proportionately small heads, thin arms, and overly long
legs. HumanGaussian generates flat and disproportionate
human figures. HumanNorm introduces Normal Diffusion
and Multi-step SDS Loss, partially mitigating body propor-
tions and color oversaturation issues. However, due to the
inherent bias of SDS Loss, discrepancies remain between
the distilled knowledge and realistic human distributions,
leading to artifacts in the face, forearms, hands, and feet.

In contrast, our method directly learns the distribution
of real human bodies using diffusion, avoiding the issues
of color oversaturation and unrealistic geometry in other
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Figure 3. Qualitative comparison of 3D avatars generated from five text prompts using our method and four baseline methods. The
baselines often exhibit over-saturated colors, artifacts, and unrealistic body proportions. HumanNorm shows improved texture realism but
struggles with accurate human proportions. Our method generates photorealistic avatars with natural textures and proper geometry.

methods. Additionally, our single-pass generation process
leverages the diffusion denoising process without iterative
optimization, achieving significantly higher efficiency with
an inference time of 12 seconds on an NVIDIA RTX 3090
GPU, compared to several hours required by the baseline
methods.
Quantitative comparison. We adopt the CLIP Score [27]
and user study to evaluate the five methods objectively and
subjectively. The test prompts for evaluation are generated
by ChatGPT with random appearance, and the results are
reported in Tab. 1

For objective comparison, CLIP score is leveraged to as-
sess the consistency between the input text description and
the output renderings. Our method achieves the second-
highest CLIP Score among all approaches. Although X-
OSCAR attains a marginally higher CLIP Score, we at-
tribute this to its direct incorporation of CLIP loss during
training. In contrast, our method generates avatars of no-
tably superior visual quality. This observation is further cor-
roborated by user study results, where our method received
the highest preference score, showcasing exceptional real-
ism and alignment with textual descriptions.

For subjective comparison, we invited 28 participants to
evaluate different methods based on three criteria: text con-

sistency (Tex.), visual quality (Vis.), and realism (Real.),
using questionnaire rating from 0 to 5. The results re-
veal that the TeRA model excels by achieving the highest
score across all three questions, markedly surpassing the
runner-up, thereby demonstrating our model’s superior text-
appearance consistency, enhanced realism, and improved
rendering quality.

The runtimes of different methods are also reported in
Table 1. As all four other methods are SDS-based methods
requiring iterative optimization for each generation, their
runtimes are typically more than 1 hour on a single Nvidia
RTX 3090 GPU. In contrast, our method boasts a single
generation time of just 12 seconds, representing a signifi-
cant improvement of two orders of magnitude in speed com-
pared to other methods.

4.3. Ablation Study
As illustrated in Fig. 4, we perform an ablation study fo-
cusing on two key modules: the resolution of the distilled
structured latent space and our novel inpainting strategy de-
signed for virtual try-on.

Latent Space Resolution. In Fig. 4-(a), we compare the
performance of structured latent space with resolutions of
128× 128 and 256× 256. The results demonstrate that the
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Method CLIP User Study Time↓
Score↑ Tex.↑ Vis.↑ Real.↑

TADA [44] 29.86 3.27 2.25 2.11 2.3h
X-Oscar [52] 32.46 3.56 2.54 2.26 2.0h
HumanGaussiann [47] 29.31 3.74 2.49 2.28 1.0h
HumanNorm [34] 29.94 3.79 3.01 3.04 4.0h
TeRA (Ours) 30.17 4.54 4.33 4.35 12s

Table 1. Quantitative comparison of CLIP Score, User Study re-
sults and time cost for text-to-3D human generation methods.
The best and second-best scores are marked.

Figure 4. Ablation study on key components of TeRA . (a)
Comparison of structured latent space resolutions (128 × 128 vs.
256 × 256) showing that higher resolution provides richer de-
tails and fewer artifacts. (b) Evaluation of the proposed inpaint-
ing method for virtual try-on, demonstrating that inpainting on the
structured latent space yields smoother transitions and fewer arti-
facts compared to direct feature swapping.

higher resolution of 256 × 256 provides richer details and
significantly reduces artifacts in the generated 3D avatars.
The results validate our choice of a 256 × 256 resolution
as an optimal balance, providing high-quality outputs with-
out excessively increasing the training cost of the diffusion
model.

Inpainting Strategy. We evaluate the effectiveness of
our proposed inpainting method for virtual try-on, as shown
in Fig. 4-(b). We compare our method to a baseline ap-
proach that directly swaps the latent features in the speci-
fied region with newly generated features guided by the new
prompt. As evidenced in the figure, our proposed inpaint-
ing technique applied to the structured latent space results
in smoother transitions and significantly reduces artifacts
compared to the direct feature swapping method.

4.4. Application
Our proposed model generates 3D avatars by learning struc-
tured latent representations through diffusion, enabling ver-

Figure 5. Illustration of TeRA ’s downstream applications. The
upper row shows direct avatar animation using SMPL-X poses
without post-processing, while the lower row presents natural vir-
tual try-on results via diffusion-based latent space editing.

satile downstream applications such as editing and anima-
tion, as illustrated in Fig. 5. Since our method directly
generates the structured latent representation using diffu-
sion, it supports inpainting operations on the generated la-
tent space, allowing seamless 3D avatar editing such as vir-
tual try-on. Additionally, representing the 3D human using
a combination of SMPL-X and Gaussian Attribute Maps
enables flexible texture editing through color map modifi-
cations and shape editing by altering SMPL-X parameters.
Furthermore, this design facilitates straightforward anima-
tion by directly driving the generated avatars using SMPL-
X pose sequences, eliminating the need for post-processing
and ensuring efficient and realistic motion control.

5. Conclusion

We introduce TeRA , a text-to-3D avatar generation model
that achieves fast and high-quality 3D human reconstruc-
tion. By leveraging a structured latent space through dis-
tilling a pre-trained large reconstruction model, TeRA pro-
duces photorealistic avatars with strong text-model align-
ment, outperforming state-of-the-art SDS-based models in
both speed and visual quality. Our method enables practi-
cal applications such as text-based editing and animation,
demonstrating its potential in virtual try-on, gaming, and
AR/VR scenarios.

TeRA still faces certain limitations. As the training data
consists of static models, it cannot model dynamic details
like clothing wrinkles resulting from human movement.
Furthermore, due to TeRA’s reliance on the SMPL-X model
for human body representation, its modeling quality is lim-
ited for loose garments such as dresses.
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